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1. INTRODUCTION

For each positive integer N, let w,* = exp(i2=k/N), k = 1,..., N, be the

Nth roots of unity. If fis a continuous function on the unitcircle 7: | z | = 1,
satisfying
N
Y flwy®) =0, (1
k=1

for all N =1, 2,..., it is natural to ask if f is the zero function. However,
it is clear that any function f defined by

@O

@) =} ayzF — z7%),
k=1
where the series converges on 7, always satisfies (1) for all N =1,2,...,
though /' may not be the zero function. Hence, we will only consider functions
holomorphic in the open unit disc. In this paper, we obtain the following
results.

THEOREM 1. Let f(z) = Yoo anz", where
a, = O(1/n*+9) @
for some € > 0, satisfy (1) for every N = 1, 2,... . Then [ is the zero function.

Condition (2) is only a sufficient one where we put restriction on the
asymptotic behavior of the coefficients a,, . We have another result where we
assume a global condition on the a, .
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THEOREM 2. Let f(2) = Yreo nz", where
2 lag| =o(1/N), 3)

k=N

satisfy (1) for all N = 1, 2,.... Then f is the zero function.

We have a sharper result for some gap series.

THEOREM 3. Let

f@ =3 az,

k=0

where q is a positive integer and Y, o | @, | < . If f satisfies (1) for all
N =1, 2,..., then f is the zero function.

We also remark that none of the conditions in (1) can be omitted as in the
following theorem.

THEOREM 4. Let N be a positive integer. There exists a unique polymonial
Dn of degree N, leading coefficient equal to one and py(0) = O such that py
satisfies (1) for all positive integers n different from N.

2. PROOFS OF THE THEOREMS

Let f(z) = Yo o a,z" Where Yo o | a, | < 0. Suppose that f satisfies (1)
forall N =1, 2,... . We first note that

ay=102mi [ (f2))2) dz

|2y =1
n
= lim 1/n Z fw,®) = 0.
n-on P
For each N > 1, it is clear that

N 0 if Ntn
kn __
N 3, wi' = b wim
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Here, N | n means, as usual, that N is a factor of n. By the absolute conver-
gence of the infinite series of the coefficients a,, , we obtain

N ©
UN Y forst) = 3 an(l/N) T wiF

:ZanN_ zanN

n=0

By (1), we have a system of equations

Ay = Z an =0, 4
k=1
where N = 1, 2,... . To solve these equations, we make use of the Mobius
function p(n),
1 if n=1,

pn) = (=1 if n=py - pe,
0 if p?|nforsomep > 1,

where p, ,..., p; are distinct primes. It is well known (cf. [1, Theorem 263])
that

1 if n=1,
Z#(k)=§0 if 0> 1. ©)

k|n
Now,

) Ay = 3. ) 5 aun

||MZ

N izn

= Z pn) 3, a;
n=1 n|j
N ®  1<n<N
=)a ZH(”) + Y Y aum).
i=1  nlj =N+l =alj

By (4) and (5), we have forall N =1, 2,...,
) 1<n<N
w+ ¥ (X pm)a=o. ©
J=N+1 * n}j
Let d(m) denote the number of divisors of m. Then
d(m) = O(m°) @)

for all positive § (cf. [1, Theorem 315]).
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Suppose that the condition (2) is satisfied for some ¢ > 0. Then by (6)
and (7), we have, choosing & = ¢/2,

i< Y (X 1am)ial

j=N+1 ‘n|j

< 3 dij)la;| = OU/N).

i=N+1

Hence, a; = 0. For each fixed & > 1, let b; = a;, . By (2) and (4) we have

2.bis=0

for all j and
b; = O(1/(j)**).

By the same argument as above, we conclude that g, = b, = 0. This com-
pletes the proof of Theorem 1.
Actually, in the above proof, we only need the convergence of the series

i‘, d(n) | an | (8)

for all k instead of the condition (2). However, the behavior of d(n) is quite
irregular, namely, lim inf d(n) = 2 and the true “maximum order” of d(n)
is about 2'ogn/loglog~ go that in general it is rather difficult to determine the
convergence of the series in (8).

To prove Theorem 2, we again use (6) and obtain

o | <N ) laml

m=N+1

In general, for k > 1, we use the same argument as in the proof of Theorem 1
to obtain

o
lax| <N Z { Qi |-
m=N+1

The proof of Theorem 2 is completed by using the hypothesis (3).
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Let ¢ > 1. By (6) and similar argument as above, we obtain

-]

(@l < % | E 0|l ans
m=N+1" j|l¢"

= ¥ |Zu)| 1t
m=N+1" jlq

<d@ Y lamsl <d@) Y lan]

m=N+1 m=N+1

for each k = 1,2,.... Hence, by letting N tend to infinity, we have
a, = a, = --- = 0, completing the proof of Theorem 3.
To prove Theorem 4, we write

pn(@) = 2V — (eya2¥ 4 0 4 ¢2).

Then the conditions in (1) are trivially satisfied by p, for all » > N. Hence,
to determine the coefficients ¢, ,..., cy_; , S0 that py satisfies (1) for alln < N
we need only consider the following system of N — 1 linear equations

Gt teva=n
Ct e+ =r

Cn—1 = N1
where
Ll if KN,
7 )0  otherwise.

Since the matrix of coefficients of the ¢; is an upper triangular matrix with
determinant equal to one, there is a unique solution for the above system of
equations.
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