Uniqueness Theorems Determined by Function Values at the Roots of Unity
Chin-Hung Ching
Department of Mathematics, University of Melbourne, Parkville, Victoria, Australia
AND
Charles K. Chui
Department of Mathematics, Texas A \& M University, College Station, Texas 77843

Communicated by G. G. Lorentz
Received October 28, 1971

1. Introduction

For each positive integer N, let $w_{N}{ }^{k}=\exp (i 2 \pi k / N), k=1, \ldots, N$, be the N th roots of unity. If f is a continuous function on the unit circle $T:|z|=1$, satisfying

$$
\begin{equation*}
\sum_{k=1}^{N} f\left(w_{N}^{k}\right)=0 \tag{1}
\end{equation*}
$$

for all $N=1,2, \ldots$, it is natural to ask if f is the zero function. However, it is clear that any function f defined by

$$
f(z)=\sum_{k=1}^{\infty} a_{k}\left(z^{k}-z^{-k}\right),
$$

where the series converges on T, always satisfies (1) for all $N=1,2, \ldots$, though f may not be the zero function. Hence, we will only consider functions holomorphic in the open unit disc. In this paper, we obtain the following results.

Theorem 1. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, where

$$
\begin{equation*}
a_{n}=O\left(1 / n^{1+\epsilon}\right) \tag{2}
\end{equation*}
$$

for some $\epsilon>0$, satisfy (1) for every $N=1,2, \ldots$. Then f is the zero function.
Condition (2) is only a sufficient one where we put restriction on the asymptotic behavior of the coefficients a_{n}. We have another result where we assume a global condition on the a_{n}.

Theorem 2. Let $f(z)=\sum_{k=0}^{\infty} a_{n} z^{n}$, where

$$
\begin{equation*}
\sum_{k=N}^{\infty}\left|a_{n}\right|=o(1 / N) \tag{3}
\end{equation*}
$$

satisfy (1) for all $N=1,2, \ldots$. Then f is the zero function.
We have a sharper result for some gap series.

Theorem 3. Let

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{\mathbf{a}^{k}}
$$

where q is a positive integer and $\sum_{k=0}^{\infty}\left|a_{k}\right|<\infty$. If f satisfies (1) for all $N=1,2, \ldots$, then f is the zero function.

We also remark that none of the conditions in (1) can be omitted as in the following theorem.

Theorem 4. Let N be a positive integer. There exists a unique polymonial p_{N} of degree N, leading coefficient equal to one and $p_{N}(0)=0$ such that p_{N} satisfies (1) for all positive integers n different from N.

2. Proofs of the Theorems

Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ where $\sum_{n=0}^{\infty}\left|a_{n}\right|<\infty$. Suppose that f satisfies (1) for all $N=1,2, \ldots$. We first note that

$$
\begin{aligned}
a_{0} & =1 / 2 \pi i \int_{|z|=1}(f(z) / z) d z \\
& =\lim _{n \rightarrow \infty} 1 / n \sum_{k=1}^{n} f\left(w_{n}^{k}\right)=0 .
\end{aligned}
$$

For each $N \geqslant 1$, it is clear that

$$
1 / N \sum_{k=1}^{N} w_{N}^{k n}= \begin{cases}0 & \text { if } N+n \\ 1 & \text { if } N \mid n\end{cases}
$$

Here, $N \mid n$ means, as usual, that N is a factor of n. By the absolute convergence of the infinite series of the coefficients a_{n}, we obtain

$$
\begin{aligned}
1 / N \sum_{k=1}^{N} f\left(w_{N}^{k}\right) & =\sum_{n=0}^{\infty} a_{n}(1 / N) \sum_{k=1} w_{N}^{k n} \\
& =\sum_{n=0}^{\infty} a_{n N}=\sum_{n=1}^{\infty} a_{n N} .
\end{aligned}
$$

By (1), we have a system of equations

$$
\begin{equation*}
A_{N}=\sum_{k=1}^{\infty} a_{k N}=0, \tag{4}
\end{equation*}
$$

where $N=1,2, \ldots$. To solve these equations, we make use of the Möbius function $\mu(n)$,

$$
\mu(n)=\left\{\begin{array}{cll}
1 & \text { if } & n=1 \\
(-1)^{k} & \text { if } & n=p_{1} \cdots p_{k} \\
0 & \text { if } & p^{2} \mid n \text { for some } p>1
\end{array}\right.
$$

where p_{1}, \ldots, p_{k} are distinct primes. It is well known (cf. [1, Theorem 263]) that

$$
\sum_{k \mid n} \mu(k)= \begin{cases}1 & \text { if } n=1 \tag{5}\\ 0 & \text { if } n>1\end{cases}
$$

Now,

$$
\begin{aligned}
\sum_{n=1}^{N} \mu(n) A_{n} & =\sum_{n=1}^{N} \mu(n) \sum_{k=1}^{\infty} a_{k n} \\
& =\sum_{n=1}^{N} \mu(n) \sum_{n \mid j}^{j>n} a_{j} \\
& =\sum_{j=1}^{N} a_{j} \sum_{n \mid j} \mu(n)+\sum_{j=N+1}^{\infty} \sum_{n \mid j}^{1 \leqslant n \leqslant N} a_{j} \mu(n) .
\end{aligned}
$$

By (4) and (5), we have for all $N=1,2, \ldots$,

$$
\begin{equation*}
a_{1}+\sum_{j=N+1}^{\infty}\left(\sum_{n \mid j}^{1 \leqslant n \leqslant N} \mu(n)\right) a_{j}=0 . \tag{6}
\end{equation*}
$$

Let $d(m)$ denote the number of divisors of m. Then

$$
\begin{equation*}
d(m)=O\left(m^{\delta}\right) \tag{7}
\end{equation*}
$$

for all positive δ (cf. [1, Theorem 315]).

Suppose that the condition (2) is satisfied for some $\epsilon>0$. Then by (6) and (7), we have, choosing $\delta=\epsilon / 2$,

$$
\begin{aligned}
\left|a_{1}\right| & \leqslant \sum_{j=N+1}^{\infty}\left(\sum_{n \mid j}|\mu(n)|\right)\left|a_{j}\right| \\
& \leqslant \sum_{j=N+1}^{\infty} d(j)\left|a_{j}\right|=O\left(1 / N^{\epsilon / 2}\right) .
\end{aligned}
$$

Hence, $a_{1}=0$. For each fixed $k \geqslant 1$, let $b_{j}=a_{j k}$. By (2) and (4) we have

$$
\sum_{s=1}^{\infty} b_{j s}=0
$$

for all j and

$$
b_{j}=O\left(1 /(j)^{1+\epsilon}\right)
$$

By the same argument as above, we conclude that $a_{k}=b_{1}=0$. This completes the proof of Theorem 1.

Actually, in the above proof, we only need the convergence of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} d(n)\left|a_{n k}\right| \tag{8}
\end{equation*}
$$

for all k instead of the condition (2). However, the behavior of $d(n)$ is quite irregular, namely, $\lim \inf d(n)=2$ and the true "maximum order" of $d(n)$ is about $2^{\log n / \log \log n}$, so that in general it is rather difficult to determine the convergence of the series in (8).

To prove Theorem 2, we again use (6) and obtain

$$
\left|a_{1}\right| \leqslant N \sum_{m=N+1}^{\infty}\left|a_{m}\right|
$$

In general, for $k \geqslant 1$, we use the same argument as in the proof of Theorem 1 to obtain

$$
\left|a_{k}\right| \leqslant N \sum_{m=N+1}^{\infty}\left|a_{m k}\right|
$$

The proof of Theorem 2 is completed by using the hypothesis (3).

Let $q>1$. By (6) and similar argument as above, we obtain

$$
\begin{aligned}
\left|a_{k}\right| & \leqslant \sum_{m=N+1}^{\infty}\left|\sum_{j \mid q^{m}} \mu(j)\right|\left|a_{m+k}\right| \\
& =\sum_{m=N+1}\left|\sum_{j \mid q} \mu(j)\right|\left|a_{m+k}\right| \\
& \leqslant d(q) \sum_{m=N+1}^{\infty}\left|a_{m+k}\right| \leqslant d(q) \sum_{m=N+1}^{\infty}\left|a_{m}\right|
\end{aligned}
$$

for each $k=1,2, \ldots$. Hence, by letting N tend to infinity, we have $a_{1}=a_{2}=\cdots=0$, completing the proof of Theorem 3.

To prove Theorem 4, we write

$$
p_{N}(z)=z^{N}-\left(c_{N-1} z^{N-1}+\cdots+c_{1} z\right)
$$

Then the conditions in (1) are trivially satisfied by p_{N} for all $n>N$. Hence, to determine the coefficients c_{1}, \ldots, c_{N-1}, so that p_{N} satisfies (1) for all $n<N$ we need only consider the following system of $N-1$ linear equations

$$
\begin{aligned}
c_{1}+\cdots+c_{N-1} & =r_{1} \\
c_{2}+c_{4}+\cdots & =r_{2} \\
\cdots & \\
c_{N-1} & =r_{N-1},
\end{aligned}
$$

where

$$
r_{k}= \begin{cases}1 & \text { if } k \mid N \\ 0 & \text { otherwise }\end{cases}
$$

Since the matrix of coefficients of the c_{j} is an upper triangular matrix with determinant equal to one, there is a unique solution for the above system of equations.

Reference

1. G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," Oxford Univ. Press, London/New York, 1954.
