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1. 1NTRODUCTION

For each positive integer N, let W N
k = exp(i21Tk/N), k = 1,... , N, be the

Nth roots of unity. Iffis a continuous function on the unit circle T: I z I = 1,
satisfying

N

I f(wN k
) = 0,

k~l

(1)

for all N = 1, 2,..., it is natural to ask if f is the zero function. However,
it is clear that any function f defined by

00

fez) = I ak(zk - Z-k),
k~l

where the series converges on T, always satisfies (1) for all N = 1,2,...,
thoughfmay not be the zero function. Hence, we will only consider functions
ho10morphic in the open unit disc. In this paper, we obtain the following
results.

THEOREM 1. Let fez) = :L:=o anzn, where

an = O(1/nl+€) (2)

for some e > 0, satisfy (l) for every N = 1, 2,.... Then f is the zero function.

Condition (2) is only a sufficient one where we put restriction on the
asymptotic behavior of the coefficients an . We have another result where we
assume a global condition on the an .
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THEOREM 2. Let fez) = L::=o anzn, where

a:>

L Ian I = o(lIN),
k=N

satisfy (1) for all N = 1,2,.... Then f is the zero function.

We have a sharper result for some gap series.

THEOREM 3. Let

a:>

fez) = L akztl',
k=O

(3)

where q is a positive integer and L:;=o Iak I < 00. Iff satisfies (1) for all
N = 1,2,... , thenfis the zero function.

We also remark that none of the conditions in (1) can be omitted as in the
following theorem.

THEOREM 4. Let N be a positive integer. There exists a unique polymonial
PN of degree N, leading coefficient equal to one and PN(O) = 0 such that PN
satisfies (1) for all positive integers n different from N.

2. PROOFS OF THE THEOREMS

Let fez) = L::=o anzn where L::=o Ian I < 00. Suppose that f satisfies (1)
for all N = I, 2,.... We first note that

ao = 1/271'i J (f(z)lz) dz
Izl=1

n

= lim lin L f(W"k) = O.
n-4OO k=l

For each N ~ I, it is clear that

liN f w~.. = 10
k=1 1

if N f n
if N In.
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Here, N I n means, as usual, that N is a factor of n. By the absolute conver­
gence of the infinite series of the coefficients an , we obtain

N 00

liN L f(WNk) = L an(lIN) L w~
k~1 n~O k~1

00 00

= L anN = L anN.
n=O n=1

By (l), we have a system of equations

00

AN = L akN = 0,
k=1

(4)

where N = 1,2,.... To solve these equations, we make use of the Mobius
function ft(n),

if n = 1,
if n = PI ... Pk,
if p 2

1 n for somep > 1,

where PI ,... ,Pk are distinct primes. It is well known (cf. [1, Theorem 263])
that

Now,

L ft(k) = lb
kin

if n = 1,
if n> 1.

(5)

N N 00

L ft(n) An = L ft(n) L akn
n~1 n=1 k=1

N j>n

= L ft(n) L aj
n~1 nli

N 00 l<n<N

= L aj L ft(n) + L L ajft(n).
j~l nlj j=N+l nlj

By (4) and (5), we have for all N = 1,2,... ,

co l'(n~N

0 1 + L ( L ft(n)) OJ = O.
j~N+l nli

Let d(m) denote the number of divisors of m. Then

d(m) = O(mS)

for all positive i3 (cf. [1, Theorem 315]).

(6)

(7)
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Suppose that the condition (2) is satisfied for some € > o. Then by (6)
and (7), we have, choosing 8 = €/2,

00

:« L d(j) Iaj I = O(l/N</2).
i~N+l

Hence, a l = O. For each fixed k ~ 1, let bj = ajk' By (2) and (4) we have

00

L.bj8 = 0
s~l

for all j and

By the same argument as above, we conclude that ak = bl = O. This com­
pletes the proof of Theorem 1.

Actually, in the above proof, we only need the convergence of the series

00

L den) I ank I
n=l

(8)

for all k instead of the condition (2). However, the behavior of den) is quite
irregular, namely, lim inf den) = 2 and the true "maximum order" of den)
is about 210gn/lOglOgn, so that in general it is rather difficult to determine the
convergence of the series in (8).

To prove Theorem 2, we again use (6) and obtain

00

I a l I :« N L I am I·
m=N+l

In general, for k ~ 1, we use the same argument as in the proof of Theorem 1
to obtain

00

I ak I :« N L I amk I·
m~N+l

The proof of Theorem 2 is completed by using the hypothesis (3).
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Let q > 1. By (6) and similar argument as above, we obtain

Iak I ~ f IL fL(j) II am+k I
m=N+l jlqffl

L IL fL(j) II am+k I
m=N+l jlq

00 00

~ d(q) L I am+k I ~ d(q) L I am I
m=N+l m=N+l
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for each k = 1,2,.... Hence, by letting N tend to infinity, we have
a1 = a2 = ... = 0, completing the proof of Theorem 3.

To prove Theorem 4, we write

Then the conditions in (1) are trivially satisfied by PN for all n > N. Hence,
to determine the coefficients Cl , ••. , CN-l , so that PN satisfies (1) for all n < N
we need only consider the following system of N - 1 linear equations

C1 + ... + CN-l = '1
C2 + C4 + ... = '2

where

if kiN,
otherwise.

Since the matrix of coefficients of the Cj is an upper triangular matrix with
determinant equal to one, there is a unique solution for the above system of
equations.
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